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Summary

In the case-parents design for testing candidate-gene association, the conditional likelihood method based on
genotype relative risks has been developed recently. A specific relation of the genotype relative risks is referred to as
a genetic model. The efficient score tests have been used when the genetic model is correctly specified under the
alternative hypothesis. In practice, however, it is usually not able to specify the genetic model correctly. In the latter
situation, tests such as the likelihood ratio test (LRT) and the MAX3 (the maximum of the three score statistics for
dominant, additive, and recessive models) have been used. In this paper, we consider the restricted likelihood ratio
test (RLRT). For a specific genetic model, simulation results demonstrate that RLRT is asymptotically equivalent
to the score test, and both are more powerful than the LRT. When the genetic model cannot be correctly specified,
the simulation results show that RLRT is most robust and powerful in the situations we studied. MAX3 is the next
most robust and powerful test. The TDT is the easiest statistic to compute, compared to MAX3 and RLRT. When
the recessive model can be eliminated, it is also as robust and powerful as RLRT for other genetic models.
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Introduction

Schaid & Sommer (1993) introduced the conditional
likelihood approach in terms of genotype relative risks
for testing candidate-gene association using case-parents
designs. In a case-parents design, a family is ascertained
when an affected child (case) of the family is ascertained.
Then the genotypes of the case and both parents are
obtained. Without assuming Hardy-Weinberg Equilib-
rium (HWE), Schaid & Sommer (1993) derived the
conditional probabilities of case genotypes given their
parental mating types, and used them to construct effi-
cient score statistics for testing association between a ge-
netic marker and a disease under various genetic models.

∗Correspondence: Gang Zheng, Ph.D., Office of Biostatis-
tics Research, National Heart, Lung and Blood Institute.
6701 Rockledge Drive, MSC 7938, Bethesda, MD 20892,
U.S.A. Tel: (301)435 1287; Fax: (301)480 1862. E-mail:
zhengg@nhlbi.nih.gov

They showed that the transmission/disequilibrium test
(TDT) of Spielman et al. (1993) coincides with the score
statistic that is optimal for the additive genetic model.
Among the six parental mating types: (i) MM × MM ,
(ii) MM × MN , (iii) MM × NN , (iv) MN × MN , (v)
MN × NN , and (vi) NN × NN , where M and N de-
note, respectively, the disease and normal alleles, only
(ii), (iv) and (v) are informative. Therefore, in case-
parents designs, only the data from these three types
of families will be used.

Denote the penetrances at the candidate-gene locus
as f 0 = pr(case|NN ), f 1 = pr(case|MN ) and f 2 =
pr(case|MM). The genotype relative risks were defined
by Schaid & Sommer (1993) as r 1 = f 1/ f 0 and r 2 =
f 2/ f 0, where f 0 is taken as the reference penetrance.
The null hypothesis of no association is f 0 = f 1 = f 2,
i.e., r 1 = r 2 = 1. In terms of genotype relative risks,
a genetic model is recessive (REC) if r 1 = 1, addi-
tive (ADD) if r 2 = 2r 1 − 1, multiplicative (MUL) if
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Table 1 Conditional probability of case genotype, given mating type for various genetic models using (δ0, δ1)

pr(case genotype|mating type)

Mating Case General REC ADD MUL DOM
Type Genotype Count (δ0, δ1) δ0 = δ1 δ1 = 1+δ0

2 δ0 = δ2
1 δ1 = 1

(ii) MM n22
1

1+δ1

1
1+δ1

1
1+δ1

1
1+δ1

1
2

MN n21
δ1

1+δ1

δ1
1+δ1

δ1
1+δ1

δ1
1+δ1

1
2

(iv) MM n42
1

1+2δ1+δ0

1
1+3δ1

1
4δ1

1
(1+δ1)2

1
3+δ0

MN n41
2δ1

1+2δ1+δ0

2δ1
1+3δ1

1
2

2δ1
(1+δ1)2

2
3+δ0

NN n40
δ0

1+2δ1+δ0

δ1
1+3δ1

2δ1−1
4δ1

δ2
1

(1+δ1)2
δ0

3+δ0

(v) MN n51
δ1

δ1+δ0

1
2

δ1
3δ1−1

1
1+δ1

1
1+δ0

NN n50
δ0

δ1+δ0

1
2

2δ1−1
3δ1−1

δ1
1+δ1

δ0
1+δ0

r 2 = r 2
1 , and dominant (DOM) if r 1 = r 2. Note that

the definition of genetic models is meaningful only un-
der the alternative hypothesis. For arbitrary (r 1, r 2), the
model is referred to as a general genetic model. Schaid
& Sommer (1993) derived the conditional probabilities
of case genotypes given parental mating types in terms
of (r 1, r 2). In this paper, we define the genotype rel-
ative risks differently as δ0 = f 0/ f 2 and δ1 = f 1/ f 2

by taking f 2 as the reference penetrance for the reason
that follows. Since M is the disease allele, 0 < f 0 ≤
f 1 ≤ f 2 and hence δ0 and δ1 are bounded, that is,
0 ≤ δ0 ≤ δ1 ≤ 1. However, r 1 and r 2 do not share this
boundedness property. Though the two definitions of
genotype relative risks are equivalent in the sense that
there is a one-to-one correspondence between them
and that the statistics for testing the null hypothesis are
the same by using either (r 1, r 2) or (δ0, δ1), the lack of
boundedness might entail difficulties in the computa-
tion of the test statistics. In terms of (δ0, δ1), the null
hypothesis becomes H0 : δ0 = δ1 = 1. In the (δ0, δ1)
plane, the genotype relative risks are constrained to the
triangle T = {(δ0, δ1) : 0 ≤ δ0 ≤ δ1 ≤ 1}. Any point
in T except the point (δ0, δ1) = (1, 1), which speci-
fies the null hypothesis, corresponds to an alternative
hypothesis.

Let n2, n4 and n5 denote the numbers of ascertained
families with parental mating type (ii), (iv) and (v), re-
spectively. Let nij denote the number of cases that have
a genotype with j disease alleles and are from fam-
ily type i, i = 2, 4, 5, j = 0, 1, 2. Then n2 = n21 +
n22, n4 = n40 + n41 + n42 and n5 = n50 + n51. Con-
ditional on the parental mating types (ii), (iv) and (v)

and n2, n4, n5, (n22, n21) and (n51, n50) have binomial
distributions, and (n42, n41, n40) has a trinomial distribu-
tion. The numbers of cases, i.e., (n22, n21), (n42, n41, n40)
and (n51, n50) are conditionally independent given
n2, n4, n5. In Table 1, the conditional probabilities given
in Schaid (1999) are re-expressed in terms of (δ0, δ1).
The last four columns of Table 1, corresponding to the
conditional probabilities of four genetic models, are ob-
tained from the general genetic model.

Denote the probabilities of mating type (ii), (iv)
and (v) by p2, p4 and p5, respectively, which were
given in Schaid (1999). In terms of (δ0, δ1), p2 =
2p3q (1 + δ1)/R, p4 = p2q 2(1 + 2δ1 + δ0)/R and
p5 = 2pq3(δ0 + δ1)/R, where p is the frequency of
allele M, q = 1 − p and R = p2 + 2δ1pq + δ0q 2. In
this paper, we assume that a large number of families
with case are screened and n = n2 + n4 + n5 infor-
mative families with case are obtained. The number
n is referred to as the sample size of the case-parents
design.

Various test statistics based on the conditional likeli-
hood in terms of (r 1, r 2) have been studied in the lit-
erature. We review briefly these statistics and study the
restricted likelihood ratio tests. Comparison of the re-
stricted likelihood ratio tests with other tests in terms of
their robustness and power is presented.

Review of Existing Test Statistics

We review briefly the tests available in the literature
for detecting disease-gene association using case-parents
designs. The tests can be divided into two classes.
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One class of tests is for the situation that the ge-
netic model is specified under the alternative hypothe-
sis, the other for the situation that the genetic model
cannot be correctly specified under the alternative
hypothesis.

The Situation that the Genetic Model is
Specified

Schaid & Sommer (1993) proposed efficient score test
for each of the four genetic models mentioned before,
that is, the recessive (REC), dominant (DOM), additive
(ADD) and multiplicative (MUL) models. They derived
the following score statistics, respectively, for recessive,
dominant and additive models:

ZREC = (4n22 + 4n42 − 2n2 − n4)/(4n2 + 3n4)1/2

ZDOM = (n4 + 2n5 − 4n40 − 4n50)/(3n4 + 4n5)1/2,

ZADD = (n22 + 2n42 + n51 − n21 − 2n40 − n50)/

× (n2 + 2n4 + n5)1/2.

They also pointed out that the score statistic for the
multiplicative model is the same as that for additive
model.

Note that the above three score statistics can be ob-
tained as special cases from a general score statistic
as follows. Under the alternative hypothesis (δ0, δ1) ∈
T − {(1, 1)}, let λ = 1 − δ0 and x = (δ1 − δ0)/(1 −
δ0), i.e., δ0 = 1 − λ and δ1 = 1 − λ(1 − x), where
0 ≤ x, λ ≤ 1. This reparameterization establishes a
one-to-one relationship between genotype relative risks
(δ0, δ1) and (x, λ) under the alternative. With this repa-
rameterization, the null and alternative hypotheses be-
comes H0 : λ = 0 and Ha : λ > 0, respectively. By us-
ing the probabilities for the general model given in
the fourth column of Table 1 with δ0 = 1 − λ and
δ1 = 1 + λ(x − 1), the likelihood function is propor-
tional to

L1(λ, x) =

(1 − λ)n40+n50 [1 + λ(x − 1)]n21+n41+n51

[2 + λ(x − 1)]n2 [4 + λ(2x − 3)]n4 [2 + λ(x − 2)]n5
,

(1)

where the ni’s and nij’s are defined in the introduction
section. For a fixed x, the score function and the Fisher
information about λ evaluated at λ = 0 are given, re-

spectively, by

∂ log L1(λ, x)
∂λ

∣∣∣∣
λ=0

= − (n40 + n50 − n4/4 − n5/2)

+(x − 1)(n21 + n41 + n51 − n/2),

−E
[
∂2 log L1(λ, x)

∂λ2

]
λ=0

= n2(x − 1)2/4

+n4{1/4 + (x − 1)2/2− (2x − 3)2/16} + n5{1/

× 2+ (x − 1)2/2− (x − 2)2/4},

where n = n2 + n4 + n5. The efficient score statistic is
then given by

Zx =
∂/∂ log L1(λ, x)|λ=0[

−E{∂2/∂λ2 log L1(λ, x)}|λ=0

]1/2

=
a + xb

(d x2 − 2e x + c )1/2
,

(2)

where a = 3n4 − 4(n40 + n41) + 2n2 − 4n21, b =
4n21 + 4n41 + 4n51 − 2n, c = 4n2 + 3n4, d = 4n,
and e = 4n2 + 2n4. It is easy to verify that
ZREC = Z0, ZDOM = Z1 and ZADD = Z1/2. When
n2, n4 and n5 are all large, the score test statistic Zx

has asymptotically a standard normal distribution
under the null hypothesis. Thus, if Zx > z1−α, the
null hypothesis is rejected in favor of alternative hy-
pothesis with the genetic model specified by x, where
z1−α is the upper α quantile of the standard normal
distribution, and α is the probability of the Type I
error.

Schaid (1999) also derived the likelihood ratio test
(TLRT1) for each of the four genetic models. Here,
the subscript 1 in TLRT1 indicates the number of
parameters with respect to which the likelihood is
maximized.

The Situation that the Genetic Model is
Unspecified

In this situation, two robust tests were studied for testing
the null hypothesis of no association. The first test is the
general likelihood ratio test (LRT) studied by Schaid
(1999) which does not impose any restriction on the
relative risks (r 1, r 2). We now give the general LRT
statistic in terms of (δ0, δ1). From Table 1, the condi-
tional likelihood function for a general genetic model is
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proportional to

L2(δ0, δ1) =
δ

n21+n41+n51
1 δ

n40+n50
0

(1 + δ1)n2 (1 + 2δ1 + δ0)n4 (δ0 + δ1)n5
.

(3)

Then LRT statistic is given by

TLRT2 = 2 log{L2(δ̂0, δ̂1)/L2(1, 1)}, (4)

where (δ̂0, δ̂1) is the maximum likelihood estimator
(MLE) of (δ0, δ1). The MLE can be obtained by solving
the likelihood equations ∂/∂δ0 log L2(δ0, δ1) = 0 and
∂/∂δ1 log L2(δ0, δ1) = 0. The explicit expressions for
∂/∂δi log L2(δ0, δ1), i = 0, 1 are given in Appendix A.
By the classical asymptotic theory, the LRT statistic
TLRT2 follows asymptotically the Chi-square distribu-
tion with 2 degrees freedom under the null hypothesis.

The second test was studied by Zheng et al. (2002).
When the genetic model is unspecified, Zx given by (2)
cannot be used, as x can not be estimated under H0. In
this situation, Zheng et al. (2002) studied a robust test
based on the statistic MAX3 = max(Z0, Z1/2, Z1). The
critical value z∗ such that prH0 (MAX3 < z∗ ) = 1 − α

has no closed form. It has to be obtained from simu-
lation under the null hypothesis. Note that, for a large
sample sizes, (Z0, Z1) has a joint bivariate normal dis-
tribution with mean zero, variances 1 and covariance
ρ01 = corrH0 (Z0, Z1). The expression of ρ01 was given
in Zheng et al. (2002). Moreover, Z1/2 can be expressed
as a linear combination of Z0 and Z1. Thus, the asymp-
totic distribution of MAX3 can be simulated by gen-
erating independent bivariate normal vectors with zero
mean vector and the given variance-covariance matrix.

Both TLRT2 and MAX3 seem to be robust (Schaid,
1999; Zheng et al. 2002). However, their powers under
alternative hypotheses have not been compared yet.

Restricted Likelihood Ratio Tests

The general likelihood ratio test considered by Schaid
(1999) ignores the fact that 0 ≤ δ0 ≤ δ1 ≤ 1, which is
intrinsic in the underlying genetic model. Intuitively,
by ignoring this fact, the efficiency of the tests will be
adversely affected. Therefore, it is more appropriate to
consider a restricted version of the likelihood ratio test
by taking into account this fact. It should be mentioned
that the restricted likelihood ratio tests (RLRT) were

applied to linkage analysis by several authors. Holmans
(1993) considered the RLRT for the linkage analysis
using affected sib-pairs. Kruse et al. (1997) and Knapp
(1998) considered the RLRT for the linkage analysis
using extreme discordant sib-pairs. Here, we explore
the application of the RLRT for testing disease-gene
association in case-parents designs.

When the Genetic Model is Specified

A genetic model here means that a given functional
relationship between δ0 and δ1, δ1 = g (δ0), e.g., δ1 =
(1 + δ0)/2 for the additive model. When the genetic
model is specified, i.e., the g function is known, the
RLRT has a general form

TRLRT1 = 2 log
{

max
0≤δ0≤1

L2(δ0, g (δ0))/L2(1, 1)
}

,

where the likelihood L2 is given by (3). Applying the
RLRT to the recessive (δ0 = δ1), additive (δ1 = (1 +
δ0)/2), multiplicative (δ1 = δ

1/2
0 ), or dominant (δ1 = 1)

models, the RLRT statistics are, respectively, given by

TREC
RLRT1 = 2 log

{
max

0≤δ0≤1
L2(δ0, δ0)/L2(1, 1)

}
,

TADD
RLRT1 = 2 log

{
max

0≤δ0≤1
L2(δ0, (1 + δ0)/2)/L2(1, 1)

}

= 2 log
{

max
1/2≤δ1≤1

L2(2δ1 − 1, δ1)/L2(1, 1)
}

,

TMUL
RLRT1 = 2 log

{
max

0≤δ0≤1
L2

(
δ0, δ

1/2
0

)
/L2(1, 1)

}

= 2 log
{

max
0≤δ1≤1

L2

(
δ2

1, δ1

)
/L2(1, 1)

}
,

TDOM
RLRT1 = 2 log

{
max

0≤δ0≤1
L2(δ0, 1)/L2(1, 1)

}
.

To find the above restricted MLE, one can solve
∂L2(δ0, g (δ0))/∂δ0 = 0 for unrestricted MLE (see Ap-
pendix B). If the unrestricted MLE is in the range, it is
also restricted MLE; otherwise use the boundary value
as restricted MLE. The distribution of TRLRT1 for each
of the four genetic models under the null hypothesis
is no longer asymptotically the chi-square distribution
with 1 degree of freedom, χ 2

1 , since the classical asymp-
totic theory on the likelihood ratio test does not apply
here. From Self & Liang (1987), TRLRT1 follows asymp-
totically a mixture distribution, (1/2)χ 2

1 + (1/2)χ 2
0 ,
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where χ 2
0 is a degenerate distribution with all mass

at 0.

When the Genetic Model is Unspecified

In the situation that the genetic model is unspecified,
one has to maximize the likelihood function over the
region T . The RLRT statistic for the general genetic
model, denoted by TRLRT2, is given by

TRLRT2 = 2 log

{
sup

(δ0,δ1)∈T
L2(δ0, δ1)/L2(1, 1)

}

= 2 log
L2

(
δ̂∗0 , δ̂∗1

)
L2(1, 1)

.

(5)

where (δ̂∗0 , δ̂∗1 ) is the restricted MLE of (δ0, δ1) in T .
To obtain (δ̂∗0 , δ̂∗1 ), the unrestricted MLE (δ̂0, δ̂1)

is obtained first. When (δ̂0, δ̂1) is contained in T ,
(δ̂∗0 , δ̂∗1 ) = (δ̂0, δ̂1) is the restricted MLE. When (δ̂0, δ̂1)
is not contained in T and the Hessian matrix is
positive definite, (δ̂∗0 , δ̂∗1 ) must be on the bound-
aries of T , which are specified by δ0 = 0, δ0 =
δ1 and δ1 = 1, respectively. Note that L2(δ0, δ1) is
zero when δ0 = 0. Thus (δ̂∗0 , δ̂∗1 ) must be on the
other two boundaries, corresponding to the reces-
sive and dominant models, respectively. Thus, applying
RLRT, we can find restricted MLE from recessive and
dominant models. Let δ̂REC = argmax0≤δ≤1L2(δ, δ),

and δ̂DOM = argmax0≤δ≤1L2(δ, 1). Then (δ̂∗0 , δ̂∗1 ) =
(δ̂REC, δ̂REC) if L2(δ̂REC, δ̂REC) ≥ L2(δ̂DOM, 1), and
(δ̂∗0 , δ̂∗1 ) = (δ̂DOM, 1) otherwise. However, it is not easy
to show analytically that the Hessian matrix is positive
definite for any sample size n and any (δ0, δ1) contained
in T , although, given the data, the Hessian matrix can
be evaluated for any (δ0, δ1) contained in T numeri-
cally. An alternative approach to find the restricted max-
imum likelihood estimators without evaluating the Hes-
sian matrix is the grid search of (δ0, δ1) ∈ T with a step
size, say, 0.005 for both δ0 and δ1, maximizing the like-
lihood function L2(δ0, δ1) over T . This is the advantage
of using bounded genotype relative risks (δ0, δ1).

The null distributions of (4) and (5) are different.
Under the null hypothesis, (δ0, δ1) = (1, 1) is on the
boundary of the triangle T while it is the inner point
of the space of genotype relative risks without con-
straints. Thus, TRLRT2 does not follow a chi-square dis-

tribution with two degrees of freedom. From Self &
Liang (1987), TRLRT2 follows a mixture distribution,
(φ/(2π ))χ 2

2 + (1/2)χ 2
1 + (1/2 − φ/(2π ))χ 2

0 , where φ

is given by (see Appendix A)

cosφ = corrH0 (Z0, Z1)=
q4

(4q5 + 3q4)1/2(4q2 + 3q4)1/2
,

(6)

where q 2, q 4 and q 5 are the observed proportions of to-
tal n samples from mating type (ii), (iv) and (v), respec-
tively, and q i → p i for i = 2, 4, 5, as n → ∞ . When
the significance level α = 0.05, the critical value for
TLRT2 given by (4) is 5.991, i.e., the null hypothesis
is rejected when TLRT2 > 5.991. The critical value for
TRLRT2 can be simulated under the null hypothesis us-
ing (6). For example, given n = 150 informative fam-
ilies of mating type (ii), (iv) and (v), the critical values
for TRLRT2 is 4.151, 4.138 and 4.172 when the fre-
quency of allele M is 0.05, 0.20 and 0.50, respectively.
The critical values may also be obtained using Splus
functions.

Simulation Results

The empirical power of different tests is compared under
various genetic models by simulations. The simulations
are conditional on the sample size n = n2 + n4 + n5 =
150(200) families of mating type (ii), (iv) and (v) with
case. Given the M-allele frequency p and genotype rel-
ative risks δ0 and δ1, the conditional expectation of
the sample size for each informative mating type is
E(ni|n) = npi/(p2 + p4 + p5) for i = 2, 4, 5, where
p i are defined in Introduction under HWE. When
HWE does not hold, we assume the data are drawn
from a mixture of two populations with different allele
frequencies p∗ and p∗∗ . Within each sub-population,
assume HWE holds. Thus, the conditional expectation
of the sample size for each mating type within each
sub-population can be calculated as before using p∗ or
p∗∗ . Also assume that genotype relative risks in each
sub-population are the same as those in the general
population.

In the simulation, given p (or p∗∗ and p∗∗ ), ni, and
genotype relative risks, case genotypes were generated
under the alternative hypothesis using the conditional
probabilities given in Table 1. The counts nij, i = 2, 4, 5
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Table 2 Empirical power when the genetic model is known and
HWE holds

True model p Zx TLRT1 TRLRT1

α = 0.05 and n = 150
REC (δ0 = 0.4, δ1 = 0.4) 0.05 0.3251 0.3250 0.3250

0.20 0.9011 0.8390 0.9011
0.50 0.9989 0.9968 0.9989

ADD (δ0 = 0.6, δ1 = 0.8) 0.05 0.5787 0.4432 0.5541
0.20 0.5228 0.4707 0.5764
0.50 0.5267 0.5038 0.5509

MUL (δ0 = 0.49, δ1 = 0.7) 0.05 0.7685 0.6599 0.7685
0.20 0.7593 0.6548 0.7593
0.50 0.7940 0.7024 0.7940

DOM (δ0 = 0.7, δ1 = 1.0) 0.05 0.6566 0.5923 0.6566
0.20 0.6778 0.5399 0.6778
0.50 0.4273 0.3356 0.5183

α = 0.01 and n = 200
REC (δ0 = 0.4, δ1 = 0.4) 0.05 0.2267 0.2267 0.2267

0.20 0.8887 0.8322 0.8887
0.50 0.9991 0.9950 0.9991

ADD (δ0 = 0.6, δ1 = 0.8) 0.05 0.4253 0.3215 0.4122
0.20 0.3697 0.3469 0.4149
0.50 0.3699 0.3528 0.3929

MUL (δ0 = 0.49, δ1 = 0.7) 0.05 0.5984 0.4899 0.5984
0.20 0.6344 0.5844 0.6344
0.50 0.7008 0.6577 0.7401

DOM (δ0 = 0.7, δ1 = 1.0) 0.05 0.5360 0.4461 0.5360
0.20 0.5323 0.4147 0.5323
0.50 0.2237 0.1680 0.2237

and j = 0, 1, 2, were obtained. Table 2 reports the
empirical power of score statistics, TLRT1 and TRLRT1

under HWE when the genetic model is known. The
simulation was replicated 10000 times for the empirical
power calculation. Table 2 shows that the power of the
score statistic Zx for a given genetic model is almost the
same as that of TRLRT1 for the same genetic model and
both are more powerful than TLRT1.

When the genetic model is unknown, the empiri-
cal powers of MAX3, ZREC, ZADD, ZDOM, TLRT2 and
TRLRT2, were compared for four genetic models. The
simulation was replicated 5000 times for the empiri-
cal power calculation. The critical values of MAX3 and
TRLRT2 used in the power calculation are obtained by
simulations as the upper α percentile of the empirical
distributions of MAX3 and TRLRT2. The results of sim-
ulated power under HWE are presented in Table 3. Ta-
ble 4 gives the power comparison for a mixture of two
populations with different allele frequencies p∗∗ = 0.20
and p∗∗ = 0.05.

In Tables 2 and 3, we also compared the power us-
ing the level of significance α = 0.01. The conclusions,
however, are similar to α = 0.05. From Table 3 and
Table 4, when the true genetic model is recessive (or
dominant), ZDOM (or ZREC) has very low power. This
is not surprising as the recessive and dominant models
form two boundaries of the triangle T and have mini-
mum null correlation among three score statistics ZDOM,
ZREC and ZADD (Zheng et al. 2002). The TDT, ZADD,
is more robust than ZDOM and ZREC across four genetic
models. When the recessive model can be eliminated
based on prior knowledge, ZADD is a robust test compa-
rable to MAX3 and TRLRT2. Overall, TRLRT2, MAX3
and TLRT2 are robust across four genetic models. For
the low allele frequency, MAX3 and TRLRT2 have sim-
ilar power, but TRLRT2 is more powerful than MAX3
when the allele frequency is moderate (p = 0.20 or
p = 0.50). It is also noted that TRLRT2 is always more
powerful than TLRT2 in each situation studied. Similar
results are obtained when the data consists of two sub-
populations with different allele frequencies.

Discussion

In the case-parents design for testing candidate-gene as-
sociation between a disease and a genetic marker, four
genetic models (recessive, additive, multiplicative and
dominant) are defined in terms of genotype relative
risks. When the genetic model is correctly specified,
score statistic is asymptotically optimal. For arbitrary
genotype relative risks, we described a family of score
statistics indexed by a parameter which is determined by
a general genetic model. The score statistic that is opti-
mal for the corresponding genetic model may have very
low power when the genetic model is mis-specified,
e.g., the optimal test for the recessive model has very low
power when the true model is dominant and vice verse.
In this situation, several robust statistics were studied,
such as the maximum of three optimal statistics (MAX3)
and the likelihood ratio test (LRT). Schaid (1999) com-
pared the TDT (optimal for the additive model) to the
LRT which is derived for a general genetic model and
found that TDT is quite robust across four genetic mod-
els compared to the LRT. Zheng et al. (2002) com-
pared score statistics and MAX3 across a broad family of
genetic models and showed that MAX3 has efficiency
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Table 3 Empirical power when the genetic model is known and HWE holds.

Empirical power
True

p Model (δ0, δ1) MAX3 ZADD ZREC ZDOM TLRT2 TRLRT2

α = 0.05 and n = 150
0.05 Null (1,1) 0.0458 0.0470 0.0176 0.0356 0.0362 0.0514

REC (0.4,0.4) 0.3642 0.1478 0.3276 0.0580 0.2544 0.3678
DOM (0.7,1) 0.6168 0.6946 0.0372 0.6518 0.4508 0.5604
ADD (0.6,0.8) 0.5084 0.5880 0.0788 0.4962 0.3396 0.4644
MUL (0.49,0.7) 0.6728 0.7242 0.1146 0.6883 0.5032 0.6556

0.20 Null (1,1) 0.0468 0.0364 0.0296 0.0360 0.0362 0.0450
REC (0.4,0.4) 0.8508 0.4864 0.8994 0.1058 0.8014 0.8680
DOM (0.7,1) 0.4988 0.5348 0.0540 0.6158 0.4218 0.5648
ADD (0.6,0.8) 0.4458 0.5238 0.2032 0.5204 0.3754 0.5174
MUL (0.49,0.7) 0.6562 0.7628 0.3508 0.6658 0.5634 0.7158

0.50 Null (1,1) 0.0550 0.0382 0.0478 0.0396 0.0492 0.0516
REC (0.4,0.4) 0.9502 0.8500 0.9660 0.0914 0.8842 0.9384
DOM (0.7,1) 0.6556 0.6412 0.1048 0.9014 0.7512 0.8650
ADD (0.6,0.8) 0.8052 0.8962 0.7380 0.7660 0.8194 0.9082
MUL (0.49,0.7) 0.6818 0.7994 0.6960 0.4842 0.6196 0.7686

α = 0.01 and n = 200
0.05 REC (0.4,0.4) 0.1996 0.0358 0.3586 0.0160 0.1390 0.2168

DOM (0.6,1) 0.7940 0.8582 0.0338 0.8910 0.7348 0.8358
ADD (0.6,0.8) 0.2640 0.3766 0.0676 0.3746 0.2162 0.3300
MUL (0.49,0.7) 0.4460 0.5742 0.1204 0.5600 0.3924 0.5212

0.20 REC (0.4,0.4) 0.8338 0.4082 0.8282 0.0278 0.7408 0.8038
DOM (0.6,1) 0.7568 0.7396 0.0226 0.8258 0.6712 0.7648
ADD (0.6,0.8) 0.3354 0.3938 0.0924 0.3322 0.2392 0.3542
MUL (0.49,0.7) 0.5866 0.6628 0.2092 0.5394 0.4694 0.6140

0.50 REC (0.4,0.4) 0.9996 0.9764 0.9994 0.0484 0.9946 0.9982
DOM (0.6,1) 0.2054 0.2840 0.0230 0.5520 0.3764 0.5066
ADD (0.6,0.8) 0.2408 0.3910 0.1950 0.2240 0.2388 0.3644
MUL (0.49,0.7) 0.5666 0.7184 0.5088 0.3390 0.5370 0.6608

robustness property compared to optimal statistics for
each genetic model.

The restricted likelihood ratio test (RLRT) was ap-
plied to linkage analysis where IBD sharing prob-
abilities are constrained to a smaller triangle (e.g.,
Holmans, 1993 and Knapp, 1998). We applied RLRT
to the case-parents trio design for testing candidate-
gene association, in which the genotype relative risks
are constrained to a smaller triangle. The RLRT has
a mixture distribution and the simulation results show
that RLRT is more powerful than the LRT based on
a general genetic model. Based on numerical results,
across four genetic models, MAX3 and RLRT have sim-
ilar power when the allele frequency is low and RLRT
is more powerful than MAX3 for the moderate allele
frequency. Hence, when the genetic model cannot be
correctly specified, both RLRT and MAX3 can be used
in case-parents design for testing candidate-gene asso-

ciation. For each statistic across four genetic models
with minimum power, RLRT has the maximum power
among these statistics studied. This indicates the effi-
ciency robustness property of RLRT in case-parents de-
sign. MAX3 is relatively easier to calculate than RLRT,
but both require simulation under the null hypothesis
to obtain the critical values. When the recessive model
can be excluded a priori, TDT is robust compared to
RLRT, MAX3 and LRT and should be used. More-
over, as one referee pointed out that association tests
based on genotype relative risks may give spurious result
when stratified population is present, while TDT does
not.
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Table 4 Empirical power of test statistics for different genetic models and a mixture of two populations with different allele frequencies
p∗ = 0.20 and p∗∗ = 0.05 (α = 0.05 and n = 150).

Empirical power
True
Model (δ0, δ1) MAX3 ZADD ZREC ZDOM TLRT2 TRLRT2

Ratio of sample sizes of p∗ to p∗∗ is 2:1
Null (1, 1) 0.0488 0.0532 0.0294 0.0534 0.0414 0.0570
REC (0.4, 0.4) 0.9200 0.5000 0.9200 0.1200 0.7200 0.8600
DOM (0.7, 1) 0.8266 0.8628 0.0970 0.8848 0.7604 0.8602
ADD (0.6, 0.8) 0.4698 0.5772 0.2062 0.4880 0.3510 0.5258
MUL (0.49, 0.7) 0.6690 0.7642 0.3266 0.6636 0.5460 0.6988

Ratio of sample sizes of p∗ to p∗∗ is 1:1
Null (1, 1) 0.0478 0.0474 0.0300 0.0454 0.0438 0.0550
REC (0.4, 0.4) 0.7064 0.3430 0.8156 0.0942 0.6080 0.7224
DOM (0.7, 1) 0.8152 0.8710 0.0638 0.9008 0.7794 0.8554
ADD (0.6, 0.8) 0.4302 0.5888 0.1524 0.5388 0.3644 0.5032
MUL (0.49, 0.7) 0.6594 0.7614 0.3056 0.7280 0.5554 0.7034

Ratio of sample sizes of p∗ to p∗∗ is 1:2
Null (1, 1) 0.0478 0.0380 0.0294 0.0414 0.0422 0.0550
REC (0.4, 0.4) 0.6410 0.2338 0.7670 0.0840 0.5086 0.6504
DOM (0.7, 1) 0.8528 0.8706 0.1002 0.9234 0.7892 0.8812
ADD (0.6, 0.8) 0.4556 0.5098 0.1802 0.5402 0.3528 0.5104
MUL (0.49, 0.7) 0.6134 0.7320 0.2210 0.7128 0.5272 0.6976

Appendix A. Derivatives, Information
Matrix and Mixture Proportion

Let the log-likelihood be l = log L2(δ0, δ1). Then

∂l
∂δ1

= (n21 + n41 + n51)/δ1 − n2/(1 + δ1)

−2n4/(1 + 2δ1 + δ0) − n5/(δ0 + δ1)

∂l
∂δ0

= (n40 + n50)/δ0 − n5/(δ0 + δ1)

−n4/(1 + 2δ1 + δ0)

∂2l
∂δ2

1
= − (n21 + n41 + n51)/δ2

1 + n2/(1 + δ1)2

+4n4/(1 + 2δ1 + δ0)2 + n5/(δ0 + δ1)2

∂2l
∂δ2

0
= − (n40 + n50)/δ2

0 + n2/(δ0 + δ1)2

+n4/(1 + 2δ1 + δ0)2

∂2l
∂δ1∂δ0

= n5/(δ0 + δ1)2 + 2n4/(1 + 2δ1 + δ0)2.

The Fisher information matrix is I = (I (i, j ))2×2,
where I (i, j ) = −E(∂2l/∂δi ∂δ j ), i, j = 0, 1. Eval-
uating I under the null hypothesis δ0 = δ1 = 1, we
have I (0, 0) = n2/4 + 3n4/16, I (0, 1) = I (1, 0) =
− (n2/4 + n4/8), and I (1, 1) = n2/4 + n3/4 + n4/4.

Write the Fisher information matrix under the null
hypothesis as I = Q�Q′ , a spectrum decomposition
of I . Denote Q = (q ij)2×2 and � = diag(λ1, λ2). Then
q 21 = −q 12 and I (0, 0) = q 2

11λ2 + q 2
12λ1, I (1, 1) =

q 2
11λ1 + q 2

12λ2, I (0, 1) = q 11q 12(λ2 − λ1) and. In the
(δ0, δ1) plane, let the vertices of the triangle T be O =
(1, 1), P 1 = (0, 1) and P 2 = (0, 0). Then OP1 =
P 1 − O = (−1, 0) and OP2 = P 2 − O = (−1,−1)
are bases for the space T . From Self & Liang (1987),

cos δ =
(P1 − O)I (P2 − O)′

||�1/2 Q′ (P1 − O)′ ||||�1/2 Q′ (P2 − O)′ || .

It follows that (P 1 − O)I (P 2 − O)′ = n4/16,
||�1/2 Q′ (P 1 − O)′ ||2 = (4n5 + 3n4)/16 and
||�1/2 Q′ (P 2 − O)′ ||2 = (4n2 + 3n4)/16, which
yield the left side of (6) as q i = ni/n. From Zheng et
al. (2002), it equals to the null correlation of Z0 and
Z1.

Appendix B. MLE Given a Genetic Model

The unrestricted MLE can be solved from the log-
likelihood equation,

∂ log L2(δ0, g (δ0))/∂δ0 = 0.
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For the multiplicative model, δ̂1 = δ̂2
0 = (n21 + n41 +

2n40 + n50)/(n22 + n41 + 2n42 + n51). For the reces-
sive and dominant models, δ̂0 are roots of

3(n22 + n42)δ2
0 + {n2 + 3n4 − 4(n21 + n40 + n41)}δ0

− (n21 + n40 + n41) = 0,

(n41 + n42 + n51)δ2
0 + (n4 + 3n5 − 4n40 − 4n50)δ0

−3(n40 + n50) = 0,

respectively. For the additive model, δ̂1 > 1/2 satisfies

6(n22 + n42)δ3
1 − (n21 + 5n2 − n42 + 3n40 + n50

−2n51)δ2
1 + (4n21 + n2 − 4n42 − 2n40 − n50

+n51)δ1 − (n21 + n51 − n42 − n40) = 0.
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